Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis
نویسندگان
چکیده
Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.
منابع مشابه
Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different R...
متن کاملMSH inhibits growth in a line of amelanotic hamster melanoma cells and induces increases in cyclic AMP levels and tyrosinase activity without inducing melanogenesis.
In Bomirski Ab amelanotic hamster melanoma cells, L-tyrosine and/or L-dopa induce increases in tyrosinase activity as well as synthesis of melanosomes and melanin. L-tyrosine also modifies melanocyte-stimulating hormone (MSH) binding. In this paper we show that in the Bomirski amelanotic melanoma system MSH and agents that raise intracellular cyclic AMP induce dendrite formation, inhibit cell g...
متن کاملSynthesis and Preclinical Characterization of [18F]FPBZA: A Novel PET Probe for Melanoma
INTRODUCTION Benzamide can specifically bind to melanoma cells. A 18F-labeled benzamide derivative, [18F]N-(2-diethylaminoethyl)-4-[2-(2-(2-fluoroethoxy) ethoxy)ethoxy]benzamide ([18F]FPBZA), was developed as a promising PET probe for primary and metastatic melanoma. METHODS [18F]FPBZA was synthesized via a one-step radiofluorination in this study. The specific uptake of [18F]FPBZA was studie...
متن کاملReprogramming A375 cells to induced-resembled neuronal cells by structured overexpression of specific transcription genes
Induced-resembled neuronal cells (irNCs) are generated by reprogramming human melanoma cells through the introduction of key transcription factors, providing novel concepts in the treatment of malignant tumor cells and making it possible to supply neural cells for laboratory use. In the present study, irNCs were derived from A375 cells by inducing the 'forced' overexpression of specific genes, ...
متن کاملExpression and regulation of parathyroid hormone-related peptide in normal and malignant melanocytes.
We examined parathyroid hormone-related peptide (PTHrP) production and regulation in both normal human melanocytes and in a human amelanotic melanoma cell line (A375). Northern blot and immunocytochemical analysis demonstrated that both cultured A375 cells and normal human melanocytes express PTHrP, but A375 cells expressed much higher levels of the peptide. PTHrP secretory rate increased at le...
متن کامل